已知某椭圆的焦点F1(-4,0),F2(4,0),过点F2并垂直于x轴的直线与椭圆的一个焦点为B,且=10,椭圆上不同两点A(x1,y1),C(x2,y2)满足条件|F2A|,|F2B|,|F2C|成等差数列.(1)求该椭圆的方程;(2)求弦AC中点的横坐标.
已知等差数列{a n}的首项a 1=1,公差d>0,且其第二项、第五项、第十四项分别是等比数列{b n}的第二、三、四项. (1)求数列{a n}与{b n}的通项公式; (2)令数列{c n}满足:c n= ,求数列{c n}的前101项之和T 101; (3)设数列{c n}对任意n∈N*,均有 + +…+ =a n +1成立,求c 1+c 2+…+c 2012的值.
已知A(0,3)、B(-1,0)、C(3,0),求D点的坐标,使四边形ABCD为直角梯形(A、B、C、D按逆时针方向排列).
在中,分别是角的对边长.已知a=2,.(1)若,求的值; (2)若的面积,求,的值.
(1)解不等式: (见课本71页)(2)已知不等式对一切实数恒成立,求实数的取值范围.
某同学参加3门课程的考试.假设该同学第一门课程取得优秀成绩的概率为,第二、第三门课程取得优秀成绩的概率分别为,(>),且不同课程是否取得优秀成绩相互独立.记ξ为该生取得优秀成绩的课程数,其分布列为
(Ⅰ)求该生至少有1门课程取得优秀成绩的概率;(Ⅱ)求,的值;(Ⅲ)求数学期望ξ.