已知数列中,,n≥2时,求通项公式.
已知函数,设曲线在点处的切线为,若与圆相切,求的值.
(本小题满分12分)已知函数在其定义域上满足.(1)函数的图象是否是中心对称图形?若是,请指出其对称中心(不证明);(2)当时,求x的取值范围;(3)若,数列满足,那么:①若,正整数N满足时,对所有适合上述条件的数列,恒成立,求最小的N;②若,求证:.
(本小题满分12分)如图,设是椭圆的左焦点,直线为对应的准线,直线与轴交于点,为椭圆的长轴,已知,且.(1)求椭圆的标准方程;(2)求证:对于任意的割线,恒有;(3)求三角形△ABF面积的最大值.
(本小题满分12分)如图,在边长为a的正方体中,M、N、P、Q分别为AD、CD、、 的中点.(1)求点P到平面MNQ的距离;(2)求直线PN与平面MPQ所成角的正弦值.
(本小题满分13分)如图PA⊥平面ABCD,四边形ABCD是矩形,E、F分别是AB,PD的中点.(1)求证:AF//平面PCE;(2)若PA=AD且AD=2,CD=3,求P—CE—A的正切值.