某厂使用两种零件A、B装配两种产品P、Q,该厂的生产能力是月产P产品最多有2500件,月产Q产品最多有1200件;而且组装一件P产品要4个A、2个B,组装一件Q产品要6个A、8个B,该厂在某个月能用的A零件最多14000个;B零件最多12000个. 已知P产品每件利润1000元,Q产品每件2000元,欲使月利润最大,需要组装P、Q产品各多少件?最大利润多少万元.
如图,一矩形铁皮的长为8cm,宽为5cm,在四个角上截去 四个相同的小正方形,制成一个无盖的小盒子,问小正方形的 边长为多少时,盒子容积最大?
已知曲线与在处的切线互相垂直,求的值
(本小题满分14分) 椭圆与直线相交于两点,且 (为原点). (1)求证:为定值;(2)若离心率,求椭圆长轴的取值范围。
(本小题满分12分) 已知抛物线以原点为顶点,以轴为对称轴,焦点在直线上. (1)求抛物线的方程;(2)设是抛物线上一点,点的坐标为,求的最小值(用表示),并指出此时点的坐标。
(本小题满分12分) 已知两点满足条件的动点P的轨迹是曲线E,直线l:y= kx-1与曲线E交于A、B两个不同点。 (1)求k的取值范围;(2)如果求直线l的方程.