设,曲线y = f(x)在点(2,f(2))处的切线方程为y = x+3.(1)求f(x)的解析式;(2)若x∈[2,3]时,f(x)≥bx恒成立,求实数b的取值范围.
已知椭圆的中心为坐标原点,短轴长为2,一条准线方程为l:x=2.(1)求椭圆的标准方程;(2)设O为坐标原点,F是椭圆的右焦点,点M是直线l上的动点,过点F作OM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值.
已知m>0,a,b∈R,求证:.
解不等式|2x-4|<4-|x|.
已知曲线C的极坐标方程是ρ=2sin θ,直线l的参数方程是 (t为参数).(1)将曲线C的极坐标方程化为直角坐标方程;(2)设直线l与x轴的交点是M,N是曲线C上一动点,求MN的最大值.
在极坐标系中,圆C的方程为ρ=2 sin ,以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为 (t为参数),判断直线l和圆C的位置关系.