如下图,某地一天从6时到14时的温度变化曲线近似满足函数y=Asin(ωx+φ)+b. (1)求这段时间的最大温差.(2)写出这段曲线的函数解析式.
已知质量为的物体,将该物体发射升空脱离地球,求证:物体脱离地球时所做的功为(其中,分别为地球的质量和半径,为引力常数).
如图,扇形AOB的半径为1,中心角为45°,矩形EFGH内接于扇形,求矩形对角线长的最小值.
用活塞封闭圆柱钢筒中的理想气体,气体膨胀时推动活塞.设气体体积从V0膨胀到V1,且膨胀时温度不变,求气体压力对活塞所作功.
已知圆C:内有一点P(2,2),过点P作直线l交圆C于A、B两点. (1)当l经过圆心C时,求直线l的方程; (2)当弦AB被点P平分时,写出直线l的方程; (3)当直线l的倾斜角为45º时,求弦AB的长.
对,不等式所表示的平面区域为,把内的整点(横坐标与纵坐标均为整数的点)按其到原点的距离从近到远排成一列点:(1)求,(2)若(为非零常数),问是否存在整数,使得对任意,都有.