如图,在三棱柱ABC—A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EFA1∥平面BCHG.
已知中心在原点O,焦点在x轴上,离心率为的椭圆过点(1)求椭圆的方程;(2)设不过原点O的直线与该椭圆交于P,Q两点,满足直线的斜率依次成等比数列,求面积的取值范围.
大学生自主创业已成为当代潮流.某大学大三学生夏某今年一月初向银行贷款两万元作开店资金,全部用作批发某种商品.银行贷款的年利率为6%,约定一年后一次还清贷款.已知夏某每月月底获得的利润是该月月初投人资金的15%,每月月底需要交纳个人所得税为该月所获利润的20%,当月房租等其他开支1500元,余款作为资金全部投入批发该商品再经营,如此继续,假定每月月底该商品能全部卖出.(1)设夏某第n个月月底余元,第n+l个月月底余元,写出a1的值并建立与的递推关系;(2)预计年底夏某还清银行贷款后的纯收入.
如图,在四棱锥E—ABCD中,底面ABCD为边长为5的正方形,AE平面CDE,AE=3.(1)若为的中点,求证:平面;(2)求直线与平面所成角的正弦值.
已知某中学高三文科班学生的数学与地理的水平测试成绩抽样统计如下表:
若抽取学生n人,成绩分为A(优秀)、B(良好)、C(及格)三个等级,设x,y分别表示数学成绩与地理成绩,例如:表中数学成绩为B等级的共有20+18+4=42人,已知x与y均为B等级的概率是0.18.(1)若在该样本中,数学成绩优秀率是30%,求a,b的值;(2)在地理成绩为C等级的学生中,已知a≥10,b≥8,求数学成绩为A等级的人数比C等级的人数少的概率.
在中,a,b,c分别为内角A,B,C的对边,已知:,的外接圆的半径为.(1)求角C的大小;(2)求的面积S的最大值.