盒中仅有4只白球5只黑球,从中任意取出一只球.(1)“取出的球是黄球”是什么事件?它的概率是多少?(2)“取出的球是白球”是什么事件?它的概率是多少?(3)“取出的球是白球或黑球”是什么事件?它的概率是多少?
(本小题满分12分)若公比为的等比数列的首项,且满足=,(…) (1)求的值; (2)设,求数列的前项和.
(本小题满分10分)选修4—5:不等式选讲 已知且关于的不等式的解集为. (Ⅰ)求的值; (Ⅱ)若,均为正实数,且满足,求的最小值.
(本小题满分10分)选修4—4:坐标系与参数方程 在直角坐标系中,直线的参数方程为为参数),以该直角坐标系的原点为极点,轴的非负半轴为极轴的极坐标系下,圆的方程为. (Ⅰ)求直线的普通方程和圆的圆心的极坐标; (Ⅱ)设直线和圆的交点为、,求弦的长.
(本小题满分10分)选修4—1:几何证明选讲如图,为⊙的直径,直线与⊙相切于,垂直于,垂直于,垂直于,连接,. 证明:(Ⅰ);
第1题图
(本小题满分12分)已知函数,(其中). (Ⅰ)如果函数和有相同的极值点,求的值,并直接写出函数的单调区间; (Ⅱ)令,讨论函数在区间上零点的个数。