( (本题满分15分 )椭圆的中心在原点,焦点在轴上,离心率为,并与直线相切. (Ⅰ)求椭圆的方程; (Ⅱ)如图,过圆:上任意一点作椭圆的两条切线. 求证:.
按照下列要求,分别求有多少种不同的方法? (1)6个不同的小球放入4个不同的盒子; (2)6个不同的小球放入4个不同的盒子,每个盒子至少一个小球; (3)6个相同的小球放入4个不同的盒子,每个盒子至少一个小球; (4)6个不同的小球放入4个不同的盒子,恰有1个空盒.
在平面直角坐标系中,以坐标原点为极点,轴的非负半轴为极轴建立坐标系.已知点的极坐标为,直线的极坐标方程为,且点在直线上. (1)求的值及直线的直角坐标方程; (2)圆c的参数方程为,(为参数),试判断直线与圆的位置关系.
已知函数,. (I)求的最大值和最小值; (II)若不等式在上恒成立,求实数的取值范围.
已知函数. (Ⅰ)求函数的最小正周期; (Ⅱ)求函数的单调递增区间. (Ⅲ)该函数由通过怎样的图像变换得到.
已知向量,,-<θ<. (Ⅰ)若,求θ; (Ⅱ)求的最大值.