( (本题满分15分 )椭圆的中心在原点,焦点在轴上,离心率为,并与直线相切. (Ⅰ)求椭圆的方程; (Ⅱ)如图,过圆:上任意一点作椭圆的两条切线. 求证:.
(本小题12分)甲、乙两位学生参加数学竞赛培训,在活动期间,他们参加的5次测试成绩记录如下:甲 82 82 79 95 87 乙 95 75 80 90 85⑴用茎叶图表示这两组数据;⑵若要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?说明理由。
(本小题12分)一个盒子中装有张卡片,每张卡片上写有个数字,数字分别是、、、。现从盒子中随机抽取卡片,⑴若一次抽取张卡片,求张卡片上数字之和大于的概率;⑵若第一次抽张卡片,放回后再抽取张卡片,求两次抽取中至少一次抽到数字的概率。
(本小题12分)已知命题:函数的图象与轴没有公共点,命题,若命题为真命题,求实数的取值范围
(本小题满分14分)已知函数R, .(1)求函数的单调区间;(2)若关于的方程为自然对数的底数)只有一个实数根, 求的值.
(本小题满分14分)如图直线l:y=x+b与抛物线C:x2=4y相切于点A.(1)求实数b的值;(2)求以点A为圆心,且与抛物线C的准线相切的圆的方程.