首页 / 高中数学 / 试题详细
  • 更新 2022-09-03
  • 科目 数学
  • 题型 解答题
  • 难度 中等
  • 浏览 1694

已知二次函数y=f(x)在x=处取得最小值- (t>0),f(1)=0.
(1)求y=f(x)的表达式;
(2)若任意实数x都满足等式f(xg(x)+anx+bn=xn+1g(x)]为多项式,n∈N*),试用t表示anbn
(3)设圆Cn的方程为(xan)2+(ybn)2=rn2,圆CnCn+1外切(n=1,2,3,…);{rn}是各项都是正数的等比数列,记Sn为前n个圆的面积之和,求rnSn.

登录免费查看答案和解析

已知二次函数yf(x)在x处取得最小值-(t>0),f(1)