某城市2001年末汽车保有量为30万辆,预计此后每年报废上一年末汽车保有量的6%,并且每年新增汽车数量相同.为保护城市环境,要求该城市汽车保有量不超过60万辆,那么每年新增汽车数量不应超过多少辆?
在数列中, (1)若数列是等比数列, 求实数; (2)求数列的前项和.
已知函数 (1)当时,求函数取得最大值和最小值时的值; (2)设锐角的内角A、B、C的对应边分别是,且,若向量与向量平行,求的值.
如图,已知椭圆的离心率为,以椭圆的 左顶点为圆心作圆,设圆与椭圆交于点与点. (1)求椭圆的方程; (2)求的最小值,并求此时圆的方程; (3)设点是椭圆上异于、的任意一点,且直线、分别与轴交于点、,为坐标原点,求证:为定值.
已知函数. (1)当时,求函数的极值; (2)若对,有成立,求实数的取值范围.
已知函数,数列的前项和为,点均在函数的图象上. (1)求数列的通项公式; (2)令,证明:.