甲、乙两地相距S千米,汽车从甲地匀速驶到乙地,速度不得超过c千米/小时,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成,可变部分与速度v(km/h)的平方成正比,比例系数为b,固定部分为a元 (1)把全程运输成本y(元)表示为v(km/h)的函数,并指出这个函数的定义域;(2)为了使全程运输成本最小,汽车应以多大速度行驶?
2010年上海世博会某国要建一座八边形(不一定为正八边形)的展馆区(如图),它的主体造型的平面图是由二个相同的矩形和构成的面积为m2的十字型地域,计划在正方形上建一座“观景花坛”,造价为元/m2,在四个矩形上(图中阴影部分)铺花岗岩地坪,造价为元/m2,再在四个空角(如等)上铺草坪,造价为元/m2.设总造价为元,长为m. (1)试建立与的函数关系 (2)当为何值时,最小?并求这个最小值
如下图所示,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点. (1)求证:AC⊥BC1; (2)求证:AC1∥平面CDB1; (3)求三棱锥的体积.
在锐角中,已知内角,,所对的边分别为,,,向量,,且向量共线. (1)求角的大小; (2)如果,求的周长的最大值.
(本小题满分10分)已知数列的各项均为正整数,对于任意n∈N*,都有成立,且. (1)求,的值; (2)猜想数列的通项公式,并给出证明.
(本小题满分10分)已知四棱锥的底面为直角梯形,,底面,且,,是的中点。 (1)证明:面面; (2)求与所成的角的正弦值; (3)求面与面所成二面角的余弦值.