已知数列满足,求数列的通项公式。
已知△ABC的三个内角A、B、C的对边分别为a、b、c,且.求:(1)的值;(2)若a=2,求△ABC周长的最大值.
已知关于x的不等式(其中)。(1)当a=4时,求不等式的解集;(2)若不等式有解,求实数a的取值范围。
在极坐标系中,曲线,过点A(5,α)(α为锐角且)作平行于的直线,且与曲线L分别交于B,C两点。(1)以极点为原点,极轴为x轴的正半轴,取与极坐标相同单位长度,建立平面直角坐标系,写出曲线L和直线的普通方程;(2)求|BC|的长。
如图,相交于A、B两点,AB是的直径,过A点作的切线交于点E,并与BO1的延长线交于点P,PB分别与、交于C,D两点。求证:(1)PA·PD=PE·PC;(2)AD=AE。
如图,F1,F2是离心率为的椭圆C:(a>b>0)的左、右焦点,直线l:x=﹣将线段F1F2分成两段,其长度之比为1:3.设A,B是C上的两个动点,线段AB的中垂线与C交于P,Q两点,线段AB的中点M在直线l上.(1)求椭圆C的方程;(2)求的取值范围.