设{an}为等差数列,{bn}为等比数列,a1=b1=1,a2+a4=b3,b2·b4=a3,分别求出{an}及{bn}的前n项和S10及T10.
已知等差数列的公差大于0,且是方程的两根,数列的前项和为,且 (1)求数列、的通项公式;(2)设数列的前项和为,试比较的大小,并说明理由.
双曲线上一点到左,右两焦点距离的差为2.(1)求双曲线的方程;(2)设是双曲线的左右焦点,是双曲线上的点,若,求的面积;(3)过作直线交双曲线于两点,若,是否存在这样的直线,使为矩形?若存在,求出的方程,若不存在,说明理由.
如图,三棱柱中,侧面底面,,且,O为中点.(1)证明:平面;(2)求直线与平面所成角的正弦值;(3)在上是否存在一点,使得平面,若不存在,说明理由;若存在,确定点的位置.
解关于的不等式:
在△ABC中,角A,B,C所对的边分别为a,b,c,且满足csinA=acosC.(1)求角C的大小;(2)求的最大值,并求取得最大值时角A、B的大小.