已知抛物线的顶点为椭圆的中心,椭圆的离心率是抛物线离心率的一半,且它们的准线互相平行.又抛物线与椭圆交于点,求抛物线与椭圆的方程.
已知Sn是等比数列{an}的前n项和,S4、S10、S7成等差数列.(I )求证而a3,a9,a6成等差数列;(II)若a1=1,求数列{a3n}的前n项的积
设函数(Ⅰ)若,解不等式;(Ⅱ)若函数有最小值,求实数的取值范围.
已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的轴的正半轴重合.直线的参数方程是(为参数),曲线的极坐标方程为.(Ⅰ)求曲线的直角坐标方程;(Ⅱ)设直线与曲线相交于,两点,求,两点间的距离.
如图,△内接于⊙,,直线切⊙于点,弦,相交于点.(Ⅰ)求证:△≌△;(Ⅱ)若,求长.
设函数(Ⅰ)时,求的单调区间;(Ⅱ)当时,设的最小值为恒成立,求实数t的取值范围.