如右图,一个结晶体的形状为平行六面体,以点为端点的三条棱的长都等于,且彼此之间的夹角都是.(1)用向量表示向量.(2)求晶体的对角线长.
如图:正方体的棱长为1,点分别是和的中点 (1)求证: (2)求异面直线与所成角的余弦值。
已知圆满足以下三个条件:(1)圆心在直线上,(2)与直线相切,(3)截直线所得弦长为6。求圆的方程。
求通过两条直线和的交点,且距原点距离为1的直线方程。
已知定义域为的函数是奇函数. (Ⅰ)求实数的值; (Ⅱ)判断函数的单调性; (Ⅲ)若对任意的,不等式恒成立,求的取值范围.
已知圆C经过P(4,-2),Q(-1,3)两点,且在y轴上截得的线段长为4,半径小于5. (Ⅰ)求直线PQ与圆C的方程; (Ⅱ)若直线l∥PQ,直线l与圆C交于点A,B且以线段AB为直径的圆经过坐标原点,求直线l的方程.