(本小题满分15分)已知等差数列{an}中,首项a1=1,公差d为整数,且满足a1+3<a3,a2+5>a4,数列{bn}满足,其前n项和为Sn.(1)求数列{an}的通项公式an;(2)若S2为S1,Sm(m∈N*)的等比中项,求正整数m的值.
已知数列 { x n } 的首项 x 1 = 3 ,通项 x n = 2 n p + n p ( n ∈ N * , p , q 为常数),且成等差数列。求: (Ⅰ) p , q 的值; (Ⅱ) 数列 { x n } 前 n 项和 S n 的公式。
(本小题满分14分) 已知抛物线、椭圆、双曲线都经过点M(1,2),它们在x轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点。 (Ⅰ)求这三条曲线方程; (Ⅱ)若定点P(3,0),A为抛物线上任意一点,是否存在垂直于x轴的直线l被以AP为直径的圆截得的弦长为定值?若存在,求出l的方程;若不存在,说明理由。
(本小题满分13分) 已知函数的图像与函数的图象相切,记 (Ⅰ)求实数b的值及函数F(x)的极值; (Ⅱ)若关于x的方程F(x)=k恰有三个不等的实数根,求实数k的取值范围.
(本小题满分12分) 如图,在正四棱柱ABCD—A1B1C1D1中,AA1=AB,点E、M分别为A1B、C1C的中点,过点A1,B,M三点的平面A1BMN交C1D1于点N. (Ⅰ)求证:EM∥平面A1B1C1D1; (Ⅱ)求二面角B—A1N—B1的正切值.
(本小题满分12分) 有一块边长为6m的正方形钢板,将其四个角各截去一个边长为x的小正方形,然后焊接成一个无盖的蓄水池。 (Ⅰ)写出以x为自变量的容积V的函数解析式V(x),并求函数V(x)的定义域; (Ⅱ)指出函数V(x)的单调区间; (Ⅲ)蓄水池的底边为多少时,蓄水池的容积最大?最大容积是多少?