已知{an}是等差数列,d为公差且不为0,a1和d均为实数,它的前n项和记作Sn,设集合A={(an,)|n∈N*},B={(x,y)| x2-y2=1,x,y∈R}.试问下列结论是否正确,如果正确,请给予证明;如果不正确,请举例说明(1)若以集合A中的元素作为点的坐标,则这些点都在同一条直线上;(2)A∩B至多有一个元素;(3)当a1≠0时,一定有A∩B≠.
在已知函数(其中)的图象与轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为, (1).求的解析式 (2).当时,求的值域。
设函数,其中, (1)证明:是上的减函数; (2)解不等式
在中,内角对边的边长分别是,已知, (1)若的面积等于,求; (2),求的面积。
(本小题满分10分)选修4-5:不等式选讲 设函数. (Ⅰ)求不等式的解集; (Ⅱ),使,求实数的取值范围.
(本小题满分13分)设函数f(x)=x3+ax2-a2x+m(a>0). (Ⅰ)求函数f(x)的单调区间; (Ⅱ)若函数f(x)在x∈[-1,1]内没有极值点,求a的取值范围; (Ⅲ)若对任意的a∈[3,6],不等式f(x)≤1在x∈[-2,2]上恒成立,求m的取值范围.