已知{an}是等差数列,d为公差且不为0,a1和d均为实数,它的前n项和记作Sn,设集合A={(an,)|n∈N*},B={(x,y)| x2-y2=1,x,y∈R}.试问下列结论是否正确,如果正确,请给予证明;如果不正确,请举例说明(1)若以集合A中的元素作为点的坐标,则这些点都在同一条直线上;(2)A∩B至多有一个元素;(3)当a1≠0时,一定有A∩B≠.
已知函数.(1)当时,求函数在上的极值;(2)若,求证:当时,.(参考数据:)
已知椭圆的离心率为,左.右焦点分别是,,点为椭圆上任意一点,且面积最大值为.(1)求椭圆的方程;(2)过作垂直于轴的直线交椭圆于.两点(点在第一象限),.是椭圆上位于直线两侧的动点,若,求证:直线的斜率为定值.
已知抛物线的焦点为,抛物线的焦点为.(1)若过点的直线与抛物线有且只有一个交点,求直线的方程;(2)若直线与抛物线交于.两点,求的面积.
在中,已知角..的对边分别为,且.(1)求的大小;(2)若,试判断的形状.
设等差数列的前项和为,,.(1)求数列的通项公式;(2)设数列的前项和为,求证:.