已知椭圆的离心率为,直线:与以原点为圆心、以椭圆的短半轴长为半径的圆相切.(I)求椭圆的方程;(II)设椭圆的左焦点为,右焦点,直线过点且垂直于椭圆的长轴,动直线垂直于点,线段垂直平分线交于点,求点的轨迹的方程;(III)设与轴交于点,不同的两点在上,且满足求的取值范围.
某单位招聘职工,经过几轮筛选,一轮从2000名报名者中筛选300名进入二轮笔试,接着按笔试成绩择优取100名进入第三轮面试,最后从面试对象中综合考察聘用50名.(1)求参加笔试的竞聘者能被聘用的概率;(2)用分层抽样的方式从最终聘用者中抽取10名进行进行调查问卷,其中有3名女职工,求被聘用的女职工的人数;(3)单位从聘用的三男和二女中,选派两人参加某项培训,至少选派一名女同志参加的概率是多少?
已知向量,.(1)若,,且,求;(2)若,求的取值范围.
设函数(其中),,已知它们在处有相同的切线.(1)求函数,的解析式;(2)求函数在上的最小值;(3)若对恒成立,求实数的取值范围.
过椭圆的左顶点作斜率为2的直线,与椭圆的另一个交点为,与轴的交点为,已知.(1)求椭圆的离心率;(2)设动直线与椭圆有且只有一个公共点,且与直线相交于点,若轴上存在一定点,使得,求椭圆的方程.
已知正项数列,其前项和满足且是和的等比中项.(1)求数列的通项公式;(2) 符号表示不超过实数的最大整数,记,求.