某电视台的一个智力游戏节目中,有一道将四本由不同作者所著的外国名著A、B、C、D与它们的作者连线的题目,每本名著只能与一名作者连线,每名作者也只能与一本名著连线.每连对一个得3分,连错得分,一名观众随意连线,他的得分记作ξ.(1)求该观众得分ξ为非负的概率;(2)求ξ的分布列及数学期望.
已知直线l经过点P(3,1),且被两平行直线l1:x+y+1=0和l2:x+y+6=0截得的线段之长为5,求直线l的方程.
求经过直线2x+3y+1=0和x-3y+4=0的交点,且垂直于直线3x+4y-7=0的直线方程.
已知两直线l1:ax-by+4=0,l2:(a-1)x+y+b=0,分别求满足下列条件的a、b的值.(1) 直线l1过点(-3,-1),且l1⊥l2;(2) 直线l1与l2平行,且坐标原点到l1、l2的距离相等.
两条直线l1:(m+3)x+2y=5-3m,l2:4x+(5+m)y=16,分别求满足下列条件的m的值.(1) l1与l2相交;(2) l1与l2平行;(3) l1与l2重合;(4) l1与l2垂直.
如图所示,在底面为直角梯形的四棱锥PABCD中,AD∥BC,PD⊥平面ABCD,AD=1,AB=,BC=4.(1)求证:BD⊥PC;(2)求直线AB与平面PDC所成的角;(3)设点E在棱PC上,=λ,若DE∥平面PAB,求λ的值.