设平面上向量与不共线,⑴证明向量与垂直⑵当两个向量与的模相等,求角.
(本小题12分)已知函数的图象与轴相交于点M,且该函数的最小正周期为.(1)求和的值; (2)已知点,点是该函数图象上一点,点是的中点,当,时,求的值。
(本小题满分12分)已知为圆上任一点,且点. (1)若在圆上,求线段的长及直线的斜率;(2)求的最大值和最小值;(3)若,求的最大值和最小值.
(本小题满分12分)设平面α∥β,两条异面直线AC和BD分别在平面α、β内,线段AB、CD中点分别为M、N,设MN=a,线段AC=BD=2a,求异面直线AC和BD所成的角.
(本小题满分10分)已知函数= (2≤≤4)(1)令,求y关于t的函数关系式,t的范围.(2)求该函数的值域.
(本小题满分12分)已知抛物线C的顶点在原点,焦点在x轴上,且抛物线上有一点(4,)到焦点的距离为5.(Ⅰ)求抛物线C的方程;(Ⅱ)若抛物线C与直线相交于不同的两点A、B,求证:.