解不等式loga(1-)>1
(13分)(理科)已知双曲线与椭圆有公共焦点,且以抛物线的准线为双曲线的一条准线.动直线过双曲线的右焦点且与双曲线的右支交于两点.(1)求双曲线的方程;(2)无论直线绕点怎样转动,在双曲线上是否总存在定点,使恒成立?若存在,求出点的坐标,若不存在,请说明理由.
(文科)已知双曲线的右焦点为,过点的动直线与双曲线相交于两点,点的坐标是.(I)证明为常数;(II)若动点满足(其中为坐标原点),求点的轨迹方程.
(理科)已知以原点为中心的椭圆的一条准线方程为,离心率,是椭圆上的动点.(1)若点的坐标分别是,求的最大值;(2)如图,点的坐标为,是圆上的点,点是点在轴上的射影,点满足条件:,求线段的中点的轨迹方程.
(文科)设直线与椭圆相交于A、B两个不同的点,与x轴相交于点F.(I)证明:(II)若F是椭圆的一个焦点,且,求椭圆的方程。
(理科)已知抛物线的准线与轴交于点,为抛物线的焦点,过点斜率为的直线与抛物线交于两点。(1)若,求的值;(2)是否存在这样的,使得抛物线上总存在点满足,若存在,求的取值范围;若不存在,请说明理由。