数列首项,前项和与之间满足.⑴求证:数列是等差数列;⑵求数列的通项公式;⑶设存在正数,使对都成立,求的最大值.
(本小题满分12分) 已知函数(Ⅰ)求的最小正周期(Ⅱ)求在区间上的最值及相应的值。
(本小题满分14分)设,函数.(1) 若,求曲线在处的切线方程;(2) 若无零点,求实数的取值范围;(3) 若有两个相异零点,求证: .
(本题满分14分已知椭圆:的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.⑴求椭圆C的方程;⑵设,、是椭圆上关于轴对称的任意两个不同的点,连结交椭圆于另一点,求直线的斜率的取值范围;⑶在⑵的条件下,证明直线与轴相交于定点.
在数列中,,,(1)求数列的通项公式;(2)求数列的前项和;(3)在(2)的条件下指出数列的最小项的值,并证明你的结论。
如图, 在直三棱柱中,,,,点是的中点.⑴求证:;⑵求证:平面;⑶求二面角的正切值.