某人定制了一批地砖. 每块地砖 (如图1所示)是边长为米的正方形,点E、F分别在边BC和CD上, △、△和四边形均由单一材料制成,制成△、△和四边形的三种材料的每平方米价格之比依次为3:2:1. 若将此种地砖按图2所示的形式铺设,能使中间的深色阴影部分成四边形.(1) 求证:四边形是正方形;(2) 在什么位置时,定制这批地砖所需的材料费用最省?
已知是一个单调递增的等差数列,且满足,,数列的前项和为. (Ⅰ)求数列的通项公式;(Ⅱ)证明数列是等比数列.
选修4—5: 不等式选讲. (Ⅰ)设函数.证明:; (Ⅱ)若实数满足,求证:
选修4—4:坐标系与参数方程. 坐标系与参数方程在直角坐标系xOy中,圆C的参数方程为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系. (Ⅰ)求圆C的极坐标方程; (Ⅱ)射线与圆C的交点为O、P两点,求P点的极坐标.
选修4—1:几何证明选讲. 已知圆内接△ABC中,D为BC上一点,且△ADC为正三角形,点E为BC的延长线上一点,AE为圆O的切线. (Ⅰ)求∠BAE 的度数; (Ⅱ)求证:
设函数,其中为自然对数的底数. (Ⅰ)已知,求证:; (Ⅱ)函数是的导函数,求函数在区间上的最小值.