观察下面由奇数组成的数阵,回答下列问题:⑴求第六行的第一个数;⑵求第20行的第一个数;⑶求第20行的所有数的和.
袋中有大小、形状相同的红、黑球各一个,现一次有放回地随机摸取3次,每次摸取一个球(Ⅰ)试问:一共有多少种不同的结果?请列出所有可能的结果;(Ⅱ)若摸到红球时得2分,摸到黑球时得1分,求3次摸球所得总分为5的概率。
为了了解中学生的体能情况,抽取了某中学同年级部分学生进行跳绳测试,将所得的数据整理后画出频率分布直方图(如下图),已知图中从左到右的前三个小组的频率分别是0.1,0.3,0.4.第一小组的频数是5. (1) 求第四小组的频率和参加这次测试的学生人数; (2) 在这次测试中,学生跳绳次数的中位数落在第几小组内? (3) 参加这次测试跳绳次数在100次以上为优秀,试估计该校此年级跳绳成绩的优秀率是多少?
假设关于某设备的使用年限和所支出的维修费用(万元)统计数据如下:
若有数据知对呈线性相关关系.求:(1) 求出线性回归方程的回归系数;(2) 估计使用10年时,维修费用是多少。
如图建立平面直角坐标系,轴在地平面上,轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在表示的曲线上,其中与发射方向有关,炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标不超过多少时,炮弹可以击中它?请说明理由.
已知函数(1) 若是的极值点,求在[1,]上的最大值;(2) 若在区间[1,+)上是增函数,求实数的取值范围.