已知函数,,设.(Ⅰ)求函数的单调区间;(Ⅱ)若以函数图像上任意一点为切点的切线的斜率恒成立,求实数的最小值;
长方体的全面积为11,十二条棱长度之和为24,求这个长方体的一条对角线长。
已知两圆C1:x2+y2="4," C2: x2+y2-2x-4y+4=0,直线l: x+2y="0," 求经过圆C1和C2的交点且和直线l相切的圆的方程。
已知命题P:方程x2+mx+1=0有两个不等的负实根;命题Q:方程4x2+4(m-2)x+1=0无实根,若“P或Q”为真,而“P且Q”为假。求实数m的取值范围。
(14分)如图,在三棱锥S—ABC中,是边长为4的正三角形,平面SAC⊥平面ABC,SA =" SC" =,M、N分别为AB、SB的中点。⑴ 求证:AC⊥SB;⑵ 求二面角N—CM—B的正切值;⑶ 求点B到平面CMN的距离。
(13分) 如图,已知椭圆的两个焦点分别为,斜率为k的直线l过左焦点F1且与椭圆的交点为A,B与y轴交点为C,又B为线段CF1的中点,若,求椭圆离心率e的取值范围。