已知函数f(x)=xm-且f(4)=.(1)求m的值;(2)判定f(x)的奇偶性;(3)判断f(x)在(0,+∞)上的单调性,并给予证明.
已知圆的极坐标方程为:. (1)将极坐标方程化为普通方程; (2)若点在该圆上,求的最大值和最小值.
已知函数 (1)试判断函数的单调性; (2)设,求在上的最大值; (3)试证明:对,不等式.
如图,在四棱锥中,底面为直角梯形,且,,侧面底面. 若. (1)求证:平面; (2)侧棱上是否存在点,使得平面?若存在,指出点的位置并证明,若不存在,请说明理由; (3)求二面角的余弦值.
在一个盒子中,放有标号分别为1,2,3的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片的标号分别为x、y,记ξ=|x-2|+|y-x|. (1)求随机变量ξ的最大值,并求事件“ξ取得最大值”的概率; (2)求随机变量ξ的分布列.
已知曲线:(为参数),:(为参数). (1)化,的方程为普通方程,并说明它们分别表示什么曲线; (2)若上的点对应的参数为,为上的动点,求中点到直线:(为参数)距离的最小值.