设函数f(x)= x3-mx2+(m2-4)x,x∈R.(1)当m=3时,求曲线y=f(x)在点(2,f(2))处的切线方程; (2)已知函数f(x)有三个互不相同的零点0,α,β,且α<β.若对任意的x∈[α,β],都有f(x)≥f(1) 恒成立,求实数m的取值范围.
(本大题满分13分)已知数列,设,数列. (1)求证:是等差数列; (2)求数列的前n项和Sn;(3)若一切正整数n恒成立,求实数m的取值范围.
(本大题满分13分)如图,现有一块半径为2m,圆心角为的扇形铁皮,欲从其中裁剪出一块内接五边形,使点在弧上,点分别在半径和上,四边形是矩形,点在弧上,点在线段上,四边形是直角梯形.现有如下裁剪方案:先使矩形的面积达到最大,在此前提下,再使直角梯形的面积也达到最大.(Ⅰ)设,当矩形的面积最大时,求的值;(Ⅱ)求按这种裁剪方法的原材料利用率.
本大题满分13分) 已知函数,过该函数图象上点(Ⅰ)证明:图象上的点总在图象的上方; (Ⅱ)若上恒成立,求实数的取值范围.
(本大题满分12分)设函数f(x)=x2+x-.(1)若函数的定义域为[0,3],求f(x)的值域;(2)若定义域为[a,a+1]时,f(x)的值域是[-,],求a的值.
(本大题满分12分)在△中,分别为内角的对边,且 (1)求(2)若,求