一机器可以按各种不同的速度运转,其生产物件有一些会有缺点,每小时生产有缺点物件的多少随机器运转速度而变化,用x表示转速(单位:转/秒),用y表示每小时生产的有缺点物件个数,现观测得到的4组观测值为(8,5),(12,8),(14,9),(16,11).(1)假定y与x之间有线性相关关系,求y对x的回归直线方程;(2)若实际生产中所容许的每小时最大有缺点物件数为10,则机器的速度不得超过多少转/秒.(精确到1转/秒)
如图,已知三棱柱的侧棱与底面垂直,且,,,点分别为、、的中点. (1)求证:平面; (2)求证:; (3)求二面角的余弦值.
在中,角所对的边分别为,已知, (1)求的大小; (2)若,求的取值范围.
如图,已知圆心坐标为的圆与轴及直线均相切,切点分别为、,另一圆与圆、轴及直线均相切,切点分别为、。 (1)求圆和圆的方程; (2)过点作的平行线,求直线被圆截得的弦的长度;
已知函数f(x)=mx2-mx-1. (1)若对于x∈R,f(x)<0恒成立,求实数m的取值范围; (2)若对于x∈[1,3],f(x)<5-m恒成立,求实数m的取值范围.
如图所示,在四棱锥中,平面,,,是的中点,是上的点且,为△中边上的高. (1)证明:平面; (2)若,,,求三棱锥的体积; (3)证明:平面.