一机器可以按各种不同的速度运转,其生产物件有一些会有缺点,每小时生产有缺点物件的多少随机器运转速度而变化,用x表示转速(单位:转/秒),用y表示每小时生产的有缺点物件个数,现观测得到的4组观测值为(8,5),(12,8),(14,9),(16,11).(1)假定y与x之间有线性相关关系,求y对x的回归直线方程;(2)若实际生产中所容许的每小时最大有缺点物件数为10,则机器的速度不得超过多少转/秒.(精确到1转/秒)
已知函数为实常数). (I)当时,求函数在上的最小值; (Ⅱ)若方程在区间上有解,求实数的取值范围; (Ⅲ)证明: (参考数据:)
设 (1)请写出的表达式(不需证明); (2)求的极值 (3)设的最大值为,的最小值为,求的最小值.
设 (1)若在上递增,求的取值范围; (2)若在上的存在单调递减区间 ,求的取值范围
已知函数(), (Ⅰ)求函数的最小值; (Ⅱ)已知,:关于的不等式对任意恒成立;:函数是增函数.若“或”为真,“且”为假,求实数的取值范围.
已知函数(其中)的图象与轴的交点中,相邻两个交点之间的距离为,且图象上一个点为. (1)求的解析式; (2)若求函数的值域; (3)将函数的图象向左平移个单位,再将图象上各点的横坐标变为原来的2倍,纵坐标不变,求经以上变换后得到的函数解析式.