一机器可以按各种不同的速度运转,其生产物件有一些会有缺点,每小时生产有缺点物件的多少随机器运转速度而变化,用x表示转速(单位:转/秒),用y表示每小时生产的有缺点物件个数,现观测得到的4组观测值为(8,5),(12,8),(14,9),(16,11).(1)假定y与x之间有线性相关关系,求y对x的回归直线方程;(2)若实际生产中所容许的每小时最大有缺点物件数为10,则机器的速度不得超过多少转/秒.(精确到1转/秒)
(本小题满分14分) 在中,角的对边分别为,,,的面积为. (Ⅰ)求的值; (Ⅱ)求的值.
(本题满分14分) 已知是方程的两个不等实根,函数的定义域为. ⑴当时,求函数的值域; ⑵证明:函数在其定义域上是增函数; ⑶在(1)的条件下,设函数, 若对任意的,总存在,使得成立, 求实数的取值范围.
(本小题满分15分) 已知动圆过定点,且与直线相切,椭圆的对称轴为坐标轴,一个焦点是,点在椭圆上. (Ⅰ)求动圆圆心的轨迹的方程及其椭圆的方程; (Ⅱ)若动直线与轨迹在处的切线平行,且直线与椭圆交于两点,问:是否存在着这样的直线使得的面积等于?如果存在,请求出直线的方程;如果不存在,请说明理由.
(本题满分15分) 如图,四边形中,为正三角形,,,与交于点.将沿边折起,使点至点,已知与平面所成的角为,且点在平面内的射影落在内. (Ⅰ)求证:平面; (Ⅱ)若已知二面角的余弦值为,求的大小.
已知数列的前项和为,,若数列是公比为的等比数列. (Ⅰ)求数列的通项公式; (Ⅱ)设,,求数列的前项和.