已知为常数,若 则求的值.
某学校为了增强学生对消防安全知识的了解,举行了一次消防安全知识竞赛.其中一道题是连线题,要求将3种不同的消防工具与它们的用途一对一连线,规定:每连对一条得2分,连错一条扣1分,参赛者必须把消防工具与用途一对一全部连起来.(Ⅰ)设三种消防工具分别为,其用途分别为,若把连线方式表示为,规定第一行的顺序固定不变,请列出所有连线的情况;(Ⅱ)求某参赛者得分为0分的概率.
将边长为的一块正方形铁皮的四角各截去一个大小相同的小正方形,然后将四边折起做成一个无盖的方盒.欲使所得的方盒有最大容积,截去的小正方形的边长应为多少?方盒的最大容积为多少?
已知函数,讨论的单调性.
已知曲线 在点 处的切线 平行直线,且点在第三象限.(1)求的坐标; (2)若直线 , 且 也过切点 ,求直线的方程.
若存在实常数和,使得函数和对其定义域上的任意实数分别满足:和,则称直线为和的“隔离直线”.已知,为自然对数的底数).(1)求的极值;(2)函数和是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.