全集,,如果则这样的实数是否存在?若存在,求出;若不存在,请说明理由。
本题满分14分) 四棱锥P-ABCD中,底面ABCD为直角梯形,,AD∥BC, AB="BC=2," AD="4," PA⊥底面ABCD,PD与底面ABCD成角,E是PD的中点. (1)点H在AC上且EH⊥AC,求的坐标; (2)求AE与平面PCD所成角的余弦值;
(本小题满分16分) 在数列中,,(≥2,且),数列的前项和. (1)证明:数列是等比数列,并求的通项公式; (2)求; (3)设,求的最大值.
(本小题满分16分) 在任何两边都不相等的锐角三角形ABC中,已知角A、B、C的对边分别为a、b、c 且 (1)求角B的取值范围; (2)求函数的值域;(3)求证:
(本题满分15分) 如图所示,某学校的教学楼前有一块矩形空地,其长为32米,宽为18米,现要在此空地上种植一块矩形草坪,三边留有人行道,人行道宽度为米与米均不小于2米,且要求“转角处”(图中矩形)的面积为8平方米 (1)试用表示草坪的面积,并指出的取值范围 (2)如何设计人行道的宽度、,才能使草坪的面积最大?并求出草坪的最大面积。
(本题满分15分) 已知二次函数的二次项系数为,且不等式的解集为. (1)若方程有两个相等的实数根, 求的解析式; (2)若的最大值为正数,求的取值范围.