(本小题满分12分)(理)已知函数取得极小值.(Ⅰ)求a,b的值;(Ⅱ)设直线. 若直线l与曲线S同时满足下列两个条件:(1)直线l与曲线S相切且至少有两个切点;(2)对任意x∈R都有. 则称直线l为曲线S的“上夹线”.试证明:直线是曲线的“上夹线”.
(本题12分)已知全集,集合AR, B={x∈R|(x-2)(x2+3x-4)=0} (1)若时,存在集合M使得AMB,求出所有这样的集合M; (2)集合A、B是否能满足∁UBA=?若能,求实数的取值范围;若不能,请说明理由.
(本题12分)若函数的定义域和值域均为[1,b](b>1),求a,b的值.
(本题12分)已知函数f (x)=x 2+ax ,且对任意的实数x都有f (1+x)=f (1-x) 成立. (1)求实数 a的值; (2)利用单调性的定义证明函数f(x)在区间[1,+∞ 上是增函数.
(本题12分)(1)已知f (x+1)=x2+4x+1,求f (x)的解析式; (2)已知f ()=+1,求f (x) 的解析式.(不必写出定义域)
(本题10分)已知,,,求的取值范围。