一缉私艇发现在北偏东方向,距离12 nmile的海面上有一走私船正以10 nmile/h的速度沿东偏南方向逃窜.缉私艇的速度为14 nmile/h, 若要在最短的时间内追上该走私船,缉私艇应沿北偏东的方向去追,.求追击所需的时间和角的正弦值.
已知锐角△ABC的三个内角A,B,C所对的边分别为a,b,c.已知(a﹣c)(sinA+sinC)=(a﹣b)sinB. (1)求角C的大小. (2)求cos2A+cos2B的取值范围.
已知函数f(x)=|2x+1|﹣|x﹣3| (1)求不等式f(x)≥4的解集; (2)求函数y=f(x)的最小值.
在平面直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.已知直线l上两点M,N的极坐标分别为(2,0),(),圆C的参数方程(θ为参数). (1)设P为线段MN的中点,求直线OP的平面直角坐标方程; (2)判断直线l与圆C的位置关系.
如图,AB为⊙O的直径,直线CD与⊙O相切于E,AD垂直CD于D,BC垂直CD于C,EF垂直于AB于F,连接AE,BE,证明: (1)∠FEB=∠CEB; (2)EF2=AD•BC.
已知函数. (1)若是函数,y=F(x)的极值点,求实数a的值; (2)若函数y=F(x)(x∈(0,3])的图象上任意一点处切线的斜率恒成立,求实数a的取值范围; (3)若函数y=f(x)在[1,2]上有两个零点,求实数a的取值范围.