设函数(Ⅰ)证明其中为k为整数(Ⅱ)设为的一个极值点,证明(Ⅲ)设在(0,+∞)内的全部极值点按从小到大的顺序排列为,证明:
已知一个圆的圆心为坐标原点,半径为.从这个圆上任意一点向轴作垂线,为垂足.(Ⅰ)求线段中点的轨迹方程; (Ⅱ)已知直线与的轨迹相交于两点,求的面积
已知定点F(2,0)和定直线,动圆P过定点F与定直线相切,记动圆圆心P的轨迹为曲线C(1)求曲线C的方程.(2)若以M(2,3)为圆心的圆与抛物线交于A、B不同两点,且线段AB是此圆的直径时,求直线AB的方程
如图,已知三棱锥的侧棱两两垂直,且,,是的中点。(1)求异面直线与所成角的余弦值;(2)求直线和平面的所成角的正弦值。(3)求点E到面ABC的距离。
设:方程有两个不等的负根,:方程无实根,若p或q为真,p且q为假,求的取值范围.
已知定义域为的函数是奇函数.(Ⅰ)求值;(Ⅱ)判断并证明该函数在定义域R上的单调性;(Ⅲ)设关于的函数有零点,求实数的取值范围.