从a,b,c,d,e这5个元素中取出4个放在4个不同的格子中,要求一个格子放一个元素,且元素b 不能放在第二个格子里,问共有多少种不同的放法?
如图,过半径为4的⊙O上的一点A引半径为3的⊙O′的切线,切点为B,若⊙O与⊙O′内切于点M,连接AM与⊙O′交于c点,求的值.
定义:已知函数f(x)与g(x),若存在一条直线y="kx" +b,使得对公共定义域内的任意实数均满足g(x)≤f(x)≤kx+b恒成立,其中等号在公共点处成立,则称直线y="kx" +b为曲线f(x)与g(x)的“左同旁切线”.已知(I)证明:直线y=x-l是f(x)与g(x)的“左同旁切线”;(Ⅱ)设P(是函数 f(x)图象上任意两点,且0<x1<x2,若存在实数x3>0,使得.请结合(I)中的结论证明:
椭圆M的中心在坐标原点D,左、右焦点F1,F2在x轴上,抛物线N的顶点也在原点D,焦点为F2,椭圆M与抛物线N的一个交点为A(3,).(I)求椭圆M与抛物线N的方程;(Ⅱ)在抛物线N位于椭圆内(不含边界)的一段曲线上,是否存在点B,使得△AF1B的外接圆圆心在x轴上?若存在,求出B点坐标;若不存在,请说明理由.
如图所示的七面体是由三棱台ABC – A1B1C1和四棱锥D- AA1C1C对接而成,四边形ABCD是边长为2的正方形,BB1⊥平面ABCD,BB1=2A1B1=2.(I)求证:平面AA1C1C1⊥平面BB1D;(Ⅱ)求二面角A –A1D—C1的余弦值.
某班同学利用节假日进行社会实践,在25~ 55岁的人群中随机抽取n人进行了一次关于生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念,则称为“低碳族”.根据调查结果得到如下统计表和各年龄段人数频率分布直方图:(I)补全频率分布直方图并求n,a,p的值;(Ⅱ)从[40,50)岁年龄段的“低碳族”中采用分层抽样法抽取18人参加户外低碳体验活动,其中选取3人作为领队,记选取的3名领队中年龄在[40,45)岁年龄段的人数为X,求X的分布列和数学期望.