袋中装有大小、质地相同的8个小球,其中红色小球4个,蓝色和白色小球各 2个.某学生从袋中每次随机地摸出一个小球,记下颜色后放回.规定每次摸出红色小球记2分,摸出蓝色小球记1分,摸出白色小球记0分.(Ⅰ)求该生在4次摸球中恰有3次摸出红色小球的概率;(Ⅱ)求该生两次摸球后恰好得2分的概率;(Ⅲ)求该生两次摸球后得分的数学期望.
(本题12分)投掷一个质地均匀,每个面上标有一个数字的正方体玩具,它的六个 面中,有两个面的数字是,两个面的数字是2,两个面的数字是4.将此玩具连续抛掷两次, 以两次 朝上一面出现的数字分别作为点P的横坐标和纵坐标. (1)求点P落在区域上的概率; (2)若以落在区域C上的所有点为顶点作面积最大的多边形区域M,在区域C上随机撒一粒 豆子,求豆子落在区域M上的概率.
设是从集合到的映射: (1)不同的映射有多少个; (2)若, (3)如果N中的每一个元素在M中都有原象,则这样的映射有多少个?
(本题10分)已知 (1)求的展开式中项的系数; (2)设,求的值.
(本小题满分12分)已知 (1)讨论的单调性, (2)当时,若对于任意,都有,求的取值 范围.
. (本小题满分12分)已知抛物线的焦点以及椭圆的上、下焦点及左、右顶点均在圆上. (1)求抛物线和椭圆的标准方程; (2)过点的直线交抛物线于、两不同点,交轴于点,已知为定值.