袋中装有大小、质地相同的8个小球,其中红色小球4个,蓝色和白色小球各 2个.某学生从袋中每次随机地摸出一个小球,记下颜色后放回.规定每次摸出红色小球记2分,摸出蓝色小球记1分,摸出白色小球记0分.(Ⅰ)求该生在4次摸球中恰有3次摸出红色小球的概率;(Ⅱ)求该生两次摸球后恰好得2分的概率;(Ⅲ)求该生两次摸球后得分的数学期望.
如图,在等腰直角△OPQ中,∠POQ=90°,OP=2,点M在线段PQ上.(1)若OM=,求PM的长;(2)若点N在线段MQ上,且∠MON=30°,问:当∠POM取何值时,△OMN的面积最小?并求出面积的最小值.
已知a,b,c分别为△ABC三个内角A,B,C的对边,c=asinC-ccosA.(1)求A;(2)若a=2,△ABC的面积为,求b,c.
在△ABC中,角A,B,C对应的边分别是a,b,c.已知cos2A-3cos(B+C)=1.(1)求角A的大小;(2)若△ABC的面积S=5,b=5,求sinBsinC的值.
在△ABC中,内角A,B,C的对边分别为a,b,c,且a2=b2+c2+bc.(1)求A;(2)设a=,S为△ABC的面积,求S+3cos Bcos C的最大值,并指出此时B的值.
如图所示,锐角三角形ABC的内心为I,过点A作直线BI的垂线,垂足为H,点E为圆I与边CA的切点.(1)求证A,I,H,E四点共圆;(2)若∠C=50°,求∠IEH的度数.