(13分)已知向量(其中).设,且的最小正周期为. (1)求; (2)若,求的值域.
某中学在运动会期间举行定点投篮比赛,规定每人投篮4次,投中一球得2分,没有投中得0分,假设每次投篮投中与否是相互独立的,已知小明每次投篮投中的概率都是.(1)求小明在投篮过程中直到第三次才投中的概率;(2)求小明在4次投篮后的总得分的分布列和期望.
已知函数(1)求的最小正周期;(2)当时,若,求的值.
各项均不为零的数列的前项和为,且,.(1)求数列的通项公式;(2)若,设,若对恒成立,求实数的取值范围.
已知圆过点,,并且直线平分圆的面积.(1)求圆的方程;(2)若过点,且斜率为的直线与圆有两个不同的公共点.①求实数的取值范围; ②若,求的值.
已知直线,圆.(1)求直线被圆所截得的弦长;(2)如果过点的直线与直线垂直,与圆心在直线上的圆相切,圆被直线分成两段圆弧,且弧长之比为,求圆的方程.