甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设甲面试合格的概率为,乙、丙面试合格的概率都是,且面试是否合格互不影响.求:(1)至少有1人面试合格的概率;(2)签约人数的分布列和数学期望.
已知中,角A,B,C所对的边分别是a,b,c,,且的周长,面积. (1)求c和的值; (2)求的值.
如图,已知平面ABCD,四边形ABEF为矩形,四边形ABCD为直角梯形,,,,. (1)求证:平面BCE; (2)求证:平面BCE; (3)求三棱锥的体积.
已知数列的前n项和和通项满足,等差数列中,. (1)求数列,的通项公式; (2)数列满足,求证:.
已知函数. (1)求函数的最小正周期和单调递增区间; (2)当时,求函数的值域.
已知函数,,(为自然对数的底数). (1)若不等式对于一切恒成立,求a的最小值; (2)若对任意的,在上总存在两个不同的,使成立,求a的取值范围.