(本小题满分14分)如图(1),是等腰直角三角形,,、分别为、的中点,将沿折起,使在平面上的射影恰为的中点,得到图(2).(Ⅰ)求证:;(Ⅱ)求三棱锥的体积.
某村计划建造一个室内面积为800平米的矩形蔬菜温室,在温室内沿左右两侧与后墙内侧各保留1米的通道,沿前侧内墙保留3米宽的空地,当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大的种植面积是多少?
已知椭圆C的短轴的一个端点为(0,1),离心率为. ⑴求该椭圆的方程; ⑵设直线y=x+2交椭圆C于A、B两点,求线段AB的长。
设数列{}的前n项和=n2,{}为等比数列,且=,(-)=. ⑴求数列{}和{}的通项公式; ⑵求数列{}的前n项和。
若一个动点P(x,y)到两个定点A(-1,0)、B(1,0)的距离差的绝对值为定值2a,求点P的轨迹方程,并说明轨迹的形状.
给定两个命题,p:对任意实数x都有ax2+ax+1>0恒成立;q:关于x的方程x2-x+a=0有实数根。如果p∨q为真命题,p∧q为假命题,求实数a的取值范围