极坐标系的极点为直角坐标系的原点,极轴为轴的正半轴,两种坐标系中的长度单位相同,已知曲线的极坐标方程为.(1)求的直角坐标方程;(2)直线(为参数)与曲线交于两点,与轴交于,求.
已知等差数列{}中.(1)求数列{}的通项公式;(2)若,求数列的前项和.
设正项等差数列的前n项和为,其中.是数列中满足的任意项.(1)求证:;(2)若也成等差数列,且,求数列的通项公式;(3)求证:.
2010年上海世博会某国要建一座八边形的展馆区,它的主体造型的平面图是由两个相同的矩形和构成的面积为200的十字型地域,计划在正方形上建一座“观景花坛”,造价为4200元,在四个相同的矩形上(图中阴影部分)铺花岗岩地坪,造价为210元,再在四个空角(如等)上铺草坪,造价为80元.设长为,长为.(1)试找出与满足的等量关系式;(2)设总造价为元,试建立与的函数关系;(3)若总造价不超过138000元,求长的取值范围.
已知数列满足:,数列满足.(1)若是等差数列,且求的值及的通项公式;(2)若是等比数列,求的前项和;(3)若是公比为的等比数列,问是否存在正实数,使得数列为等比数列?若存在,求出的值;若不存在,请说明理由.
在平面直角坐标系中,点,,,且.(1)若点、、在直线上,求的最小值,并求此时直线的方程;(2)若以线段、为邻边的平行四边形两条对角线的长相等,且,求、的值.