已知{}是公比为q的等比数列,且成等差数列.(Ⅰ)求q的值;(Ⅱ)设{}是以2为首项,q为公差的等差数列,其前n项和为Sn,当n≥2时,比较Sn与bn的大小,并说明理由..
已知函数 f x = a x sin x - 3 2 a ∈ R 且在 0 , π 2 上的最大值为 π - 3 2 , (1)求函数 f x 的解析式; (2)判断函数 f x 在 0 , π 内的零点个数,并加以证明
如图,等边三角形 O A B 的边长为 8 3 ,且其三个顶点均在抛物线 E : x 2 = 2 p y ( p > 0 ) 上。
(1)求抛物线 E 的方程; (2)设动直线 l 与抛物线 E 相切于点 P ,与直线 y = - 1 相交于点 Q ,证明以 P Q 为直径的圆恒过 y 轴上某定点.
sin 2 ( - 25 ° ) + cos 2 55 ° - sin ( - 25 ° ) cos 55 ° 某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数. (1) sin 2 13 ° + cos 2 17 ° - sin 13 ° cos 17 °
(2) sin 2 15 ° + cos 2 15 ° - sin 15 ° cos 15 °
(3) s i n 2 18 ° + c o s 2 12 ° - s i n 18 ° c o s 12 °
(4) sin 2 ( - 18 ° ) + cos 2 48 ° - sin ( - 18 ° ) cos 48 °
(5) sin 2 ( - 25 ° ) + cos 2 55 ° - sin ( - 25 ° ) cos 55 °
(Ⅰ)试从上述五个式子中选择一个,求出这个常数 (Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.
如图,在长方体 A B C D - A 1 B 1 C 1 D 1 中, A B = A D = 1 , A A 1 = 2 , M 为棱 D D 1 上的一点。
Ⅰ求三棱锥 A - M C C 1 的体积;
Ⅱ当 A 1 M + M C 取得最小值时,求证: B 1 M ⊥ 平面 M A C .
某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
(I)求回归直线方程 y ⏜ = b x + a ,其中 a = - 20 , a = y ⏜ - b x ;
(II)预计在今后的销售中,销量与单价仍然服从(I)中的关系,且该产品的成本是4元/件,为使工厂获得最大利 ∵ x = 1 6 ( x 1 + x 2 + x 3 + x 4 + x 5 + x 6 ) = 8 . 5 y = 1 6 ( y 1 + y 2 + y 3 + y 4 + y 5 + y 6 ) = 80 ∴ a = y - b x = 80 + 20 × 8 . 5 = 250 ∴ 回归直线方程 : y = - 20 x + 250 润,该产品的单价应定为多少元?(利润=销售收入-成本)