已知二次函数f(x)对任意x∈R,都有f(1-x)=f(1+x)成立,设向量=(sinx,2),=(2sin,x),=(cos2x,1),=(1,2),当x∈[0,π]时,求不等式f(·)>f(·)的解集.
设集合I={1,2,3,4,5}.选择I的两个非空子集A和B,求使B中最小的数大于A中最大的数的不同选择方法有多少种?
有8张卡片分别标有数字1,2,3,4,5,6,7,8,从中取出6张卡片排成3行2列,要求3行中仅有中间行的两张卡片上的数字之和为5,则不同的排法共有多少种?
已知n展开式中的倒数第三项的系数为45,求: (1)含x3的项; (2)系数最大的项.
(1)求证:2n+2·3n+5n-4能被25整除; (2)求证:1+3+32+…+33n-1能被26整除(n为大于1的偶数).
从1,3,5,7,9五个数字中选2个,0,2,4,6,8五个数字中选3个,能组成多少个无重复数字的五位数?