(本小题满分12分)已知且,请求出与的值
已知为定义在上的奇函数,当时,函数解析式为. (Ⅰ)求在上的解析式; (Ⅱ)求在上的最值.
某手机厂生产三类手机,每类手机均有黑色和白色两种型号,某月的产量如下表(单位:部):
(Ⅰ)用分层抽样的方法在类手机中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2部,求至少有1部黑色手机的概率; (Ⅱ)用随机抽样的方法从类白色手机中抽取8部,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8部手机的得分看成一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.
已知函数,. (Ⅰ)求的最小正周期; (Ⅱ)求在闭区间上的最大值和最小值.
已知函数(为常数)的图象与轴交于点,曲线在点处的切线斜率为. (Ⅰ)求的值及函数的极值; (Ⅱ)证明:当时,; (Ⅲ)证明:对任意给定的正数,总存在,使得当,恒有.
已知等差数列的公差为,前项和为,且,,成等比数列。 (Ⅰ)求数列的通项公式; (Ⅱ)令=求数列的前项和。