(本小题满分12分)如图所示,△ABC中,∠A=60°、∠C=45°,BC=,现点D在AC边上运动,点E在AB边上运动(不与端点重合)且AD=BE=,设△ADE面积为S (1)写出函数式,并标出定义域。 (2)求出取何值时,S有最大值,并求之。
(本小题满分14分) 在中,角A,B,C的对边分别为a,b,c,且 (1)求角C的大小; (2)求的最大值.
如图,,是抛物线(为正常数)上的两个动点,直线AB与x轴交于点P,与y轴交于点Q,且 (Ⅰ)求证:直线AB过抛物线C的焦点; (Ⅱ)是否存在直线AB,使得若存在,求出直线AB的方程;若不存在,请说明理由。
已知函数 (Ⅰ)当a=1时,求函数在区间上的最小值和最大值; (Ⅱ)若函数在区间上是增函数,求实数a的取值范围。
如图,是棱长为1的正方体,四棱锥中,平面, (Ⅰ)求证: (Ⅱ)求直线与平面所成角的正切值。
已知是等差数列,其n项和为, , (Ⅰ)求及; (Ⅱ)令,求数列的前n项和