(本小题满分14分)甲、乙两人进行乒乓球单打比赛,采用五局三胜制(即先胜三局者获冠军).对于每局比赛,甲获胜的概率为,乙获胜的概率为.如果将“乙获得冠军”的事件称为“爆出冷门”.试求此项赛事爆出冷门的概率.
已知函数. (1)若函数在区间上是减函数,求实数的取值范围; (2)令,是否存在实数,当时,函数的最小值为3,若存在,求出的值;若不存在,说明理由.
已知圆:. (1)若圆的切线在轴和轴上的截距相等,求此切线的方程. (2)从圆外一点向该圆引一条切线,切点为为坐标原点,且有,求使得取得最小值的点的坐标.
已知函数,. (1)求函数的最小值和最小正周期; (2)设的内角的对边分别为,且,,若向量与向量共线,求的值.
已知函数(),其图象在点(1,)处的切线与直线垂直,导函数的最小值为-12. (1)求函数的解析式; (2)求在的值域.
数列满足,,. (1)证明:数列是等差数列; (2)设,求数列的前项和.