将圆按向量平移得到圆,直线与圆相交于、两点,若在圆上存在点,使.求直线的方程.
(本小题满分12分)在△ABC中,a,b,c分别为内角A,B,C的对边, 面积(1)求角C的大小;(2)设函数,求的最大值,及取得最大值时角B的值.
(本小题满分12分)设命题“对任意的”,命题 “存在,使”.如果命题为真,命题为假,求实数的取值范围.
已知函数f(x)=lnx-mx(mR).(1)若曲线y=f(x)过点P(1,-1),求曲线y=f(x)在点P处的切线方程;(2)若f(x)0恒成立求m的取值范围.(3)求函数f(x)在区间[1,e]上的最大值;
已知椭圆E的两个焦点分别为和,离心率.(1)求椭圆E的方程;(2)设直线与椭圆E交于A、B两点,线段AB的垂直平分线交x轴于点T,当m变化时,求△TAB面积的最大值.
如图,底面是正三角形的直三棱柱中,D是BC的中点,.(Ⅰ)求证:平面;(Ⅱ)求的A1 到平面的距离.