(本小题满分12分)电视台举办猜奖活动,参与者需先后回答两道选择题:问题A有四个选项,问题B有六个选项,但都只有一个选项是正确的。问题A回答正确可得奖金m元,问题B回答正确可得奖金n元。 活动规定:①参与者可任意选择答题顺序;②如果第一个问题回答错误则该参与者猜奖活动中止。 一个参与者在回答问题前,对这两个问题都很陌生,因而准备靠随机猜测回答问题,试确定回答问题的顺序,使获奖金额的期望值较大。
(本小题满分12分) 根据上述不等式,请你推出一般的结论并证明你的结论。
(本小题满分12分)某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局和某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:
该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归 方程,再用被选取的2组数据进行检验; (1)求选取的2组数据恰好是相邻两个月的概率; (2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出关于的线性回归方程。 (3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想? (参考公式:)
(本小题满分10分)已知是复数,,均为实数(为虚数单位)且复数在复平面上对应的点在第一象限,求复数及实数的取值范围。
(本小题满分12分) 已知函数,,() (1)问取何值时,方程在上有两解; (2)若对任意的,总存在,使成立,求实数的取值范围?