(本题满分12分)设A(x,y)、B(x,y) 是椭圆(a > b > 0) 上的两点,, = (,),且满足· = 0,椭圆的离心率e = ,短轴长为2,O为坐标原点.(1)求椭圆的方程;(2)若存在斜率为k的直线AB过椭圆的焦点F(0,c)(c为半焦距),求直线AB的斜率k的值.
(本小题共13分) 已知函数 (I)若x=1为的极值点,求a的值; (II)若的图象在点(1,)处的切线方程为,求在区间[-2,4]上的最大值; (III)当时,若在区间(-1,1)上不单调,求a的取值范围.
(本小题共13分) 某校高三年级有男生105人,女生126人,教师42人,用分层抽样的方法从中抽取13人,进行问卷调查.设其中某项问题的选择支为“同意”,“不同意”两种,且每人都做了一种选择.下面表格中提供了被调查人答卷情况的部分信息.
(I)请完成此统计表; (II)试估计高三年级学生“同意”的人数; (III)从被调查的女生中选取2人进行访谈,求选到的两名学生中,恰有一人“同意”一人“不同决的概率.”
(本小题共13分) 如图,在四棱锥P—ABCD中,PA⊥平面ABCD,底面ABCD为直角梯形,∠ABC= ∠BAD=90°,AD>BC,E,F分别为棱AB,PC的中点. (I)求证:PE⊥BC; (II)求证:EF//平面PAD.
(本小题共13分) 已知函数 (I)当a=1时,求函数的最小正周期及图象的对称轴方程式; (II)当a=2时,在的条件下,求的值.
(本小题共14分) 已知数列满足,点在直线上. (I)求数列的通项公式; (II)若数列满足 求的值; (III)对于(II)中的数列,求证: