(本小题满分12分)在一个盒子中,放有标号分别为1,2,3的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片的标号分别为、,设为坐标原点,点的坐标为,记.(I)求随机变量的最大值,并求事件“取得最大值”的概率;(II)求随机变量的分布列和数学期望.
已知曲线的参数方程为是参数,是曲线与轴正半轴的交点.以坐标原点为极点,轴正半轴为极轴建立极坐标系,求经过点与曲线只有一个公共点的直线的极坐标方程.
如图,四边形的外接圆为⊙,是⊙的切线,的延长线与相交于点,. 求证:.
已知常数、、都是实数,函数的导函数为,的解集为. (Ⅰ)若的极大值等于,求的极小值; (Ⅱ)设不等式的解集为集合,当时,函数只有一个零点,求实数的取值范围.
已知、分别是椭圆: 的左、右焦点,点在直线上,线段的垂直平分线经过点.直线与椭圆交于不同的两点、,且椭圆上存在点,使,其中是坐标原点,是实数. (Ⅰ)求的取值范围; (Ⅱ)当取何值时,的面积最大?最大面积等于多少?
如图,在长方体中,,,,是线段的中点. (Ⅰ)求证:平面; (Ⅱ)求平面把长方体 分成的两部分的体积比.