某厂家拟在2011年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x万件与年促销费用m万元()(k为常数),如果不搞促销活动,则该产品的年销售量只能是1万件。已知2008年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2011年该产品的利润y万元表示为年促销费用m万元的函数;(2)该厂家2011年的促销费用投入多少万元时,厂家的利润最大?
国家教育部、体育总局和共青团中央曾共同号召,在全国各级各类学校要广泛、深入地开展全国亿万大中小学生阳光体育运动.为此某网站于2010年1月18日至24日,在全国范围内进行了持续一周的在线调查,随机抽取其中200名大中小学生的调查情况,就每天的睡眠时间分组整理如下表所示:
(Ⅰ)估计每天睡眠时间小于8小时的学生所占的百分比约是多少; (Ⅱ)该网站利用上面的算法流程图,对样本数据作进一步统计 分析,求输出的S的值,并说明S的统计意义.
已知甲、乙、丙三种食物的维生素A、B含量及成本如下表:
现分别用甲、乙、丙三种食物配成10kg混合食物,并使混合食物内至少含有560单位维生素A和630单位维生素B. (Ⅰ)若混合食物中恰含580单位维生素A和660单位维生素B,求混合食物的成本为多少元? (Ⅱ)分别用甲、乙、丙三种食物各多少kg,才能使混合食物的成本最低?最低成本为多少元?
已知定义在R上的函数(a,b,c,d为实常数)的图象关于原点对称,且当x=1时f(x)取得极值. (Ⅰ)求函数f(x)的解析式; (Ⅱ)证明:对任意∈[-1,1],不等式成立; (Ⅲ)若函数在区间(1,∞)内无零点,求实数m的取值范围.
已知动点P到直线的距离比它到点F的距离大. (Ⅰ)求动点P的轨迹方程; (Ⅱ)若点P的轨迹上不存在两点关于直线l:对称,求实数的取值范围.
如图,四棱柱ABCD—A1B1C1D1的底面边长和侧棱长都等于2,平面A1ACC1⊥平面ABCD,∠ABC=∠A1AC=60°,点O为底面对角线AC与BD的交点. (Ⅰ)证明:A1O⊥平面ABCD; (Ⅱ)求二面角D—A1A—C的平面角的正切值.