若数列A:a1,a2…ann≥2满足ak+1-ak=1k=1,2,…,n-1 ,则称An为E数列。记SAn=a1+a2+⋯+an。 (Ⅰ)写出一个E数列A5满足a1=a3=0; (Ⅱ)若a1=12,n=2000,证明:E数列An是递增数列的充要条件是an=2011; (Ⅲ)在a1=4的E数列An中,求使得SAn=0成立的n的最小值。
(本小题满分12分)函数是一次函数,且,,其中自然对数的底。(1)求函数的解析式,(2)在数列中,,,求数列的通项公式;(3若数列满足,试求数列的前项和。
(本小题满分13分) 某市十所重点中学进行高三联考,共有5000名考生,为了了解数学学科的学习情况, 现从中随机抽出若干名学生在这次测试中的数学成绩,制成如下频率分布表: (1)根据上面频率分布表,求①,②,③,④处的数值 (2)在所给的坐标系中画出区间[80,150]上的频率分布直方图; (3)从整体中任意抽取3个个体,成绩落在[105,120]中的个体数目为ξ ,求ξ的分布列和数 学期望.
(本小题满分13分)如图,直三棱柱A1B1C1—ABC中,C1C=CB=CA=2,AC⊥CB. D、E分别为棱C1C、B1C1的中点.(1)求二面角B—A1D—A的平面角余弦值;(2)在线段AC上是否存在一点F,使得EF⊥平面A1BD?若存在,确定其位置并证明结论;若不存在,说明理由.
(本小题满分13分)已知两个向量,f(x)= ,(1)求f(x)的值域;(2)若,求的值
(本小题满分12分)已知数列为方向向量的直线上, (I)求数列的通项公式; (II)求证:(其中e为自然对数的底数); (III)记求证: