若数列A:a1,a2…ann≥2满足ak+1-ak=1k=1,2,…,n-1 ,则称An为E数列。记SAn=a1+a2+⋯+an。 (Ⅰ)写出一个E数列A5满足a1=a3=0; (Ⅱ)若a1=12,n=2000,证明:E数列An是递增数列的充要条件是an=2011; (Ⅲ)在a1=4的E数列An中,求使得SAn=0成立的n的最小值。
求双曲线的实半轴长、虚半轴长、焦点坐标、离心率 以及渐近线的方程。
直线与双曲线的右支交于不同两点,(1)求实数的取值范围;(2)是否存在实数,使得以线段为直径的圆经过双曲线右焦点?若存在,求出的值,若不存在,请说明理由。
设中心在原点的椭圆与双曲线有公共的焦点,且它们的离心率互为倒数,求该椭圆的方程。
已知奇函数f(x)是定义在(-3,3)上的减函数,且满足不等式f(x-3)+f(x2-3)<0,求x的取值范围.
判断的奇偶性.